
Van der Waals interactions with soft interfaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys.: Condens. Matter 18 8129

(http://iopscience.iop.org/0953-8984/18/35/001)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 13:24

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/18/35
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 18 (2006) 8129–8137 doi:10.1088/0953-8984/18/35/001

Van der Waals interactions with soft interfaces

C B Hanna1,2,3, D A Pink1,3 and B E Quinn1,3

1 Department of Physics, St Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
2 Department of Physics, Boise State University, Boise, ID 83725-1570, USA
3 Advanced Foods and Materials Network–Network of Centres of Excellence (AFMNet–NCE),
Canada

E-mail: dpink@stfx.ca

Received 1 March 2006, in final form 30 June 2006
Published 15 August 2006
Online at stacks.iop.org/JPhysCM/18/8129

Abstract
Many naturally occurring microbiological and synthetic polymer systems have
soft interfaces due, e.g., to the presence of polymer brushes at the surfaces.
The initial interactions (before contact) in such systems are typically physical
rather than chemical in origin, e.g. electrostatic or van der Waals forces. We
calculate the form of the summed van der Waals interaction energies UHS and
USS between two bulk systems separated by a distance D, when one (UHS) or
both (USS) of their surfaces are soft. We find that the summed interactions
diverge weakly as D → 0, UHS ∼ −1/D and USS ∼ −�n(1/D), and comment
upon the applicability of these results.

1. Introduction

Physical interactions such as van der Waals forces, electrostatic interactions, and hydrogen
bonding dominate the first interactions between biological systems such as, for example, (i)
casein micelles (complex-structured fat globules) in milk [1–3], (ii) Gram-negative bacteria
such as, e.g., Pseudomonas aeruginosa [4], and (iii) (bacterial) membrane vesicles [4]. Casein
micelles do not aggregate due to the stabilizing existence of κ-casein polymers, which form
a brush-like structure on the surface of the micelle. Aggregation can be brought about
by the hydrolysis of the brush using enzymes, such as takes place in cheese-making (see,
e.g., [3]). P. aeruginosa cells initially interact weakly with a surface in order to detect whether
the surface environment is suited to the eventual formation of a biofilm [5]. The physical
interactions between a pair of such bacteria or between bacteria and bacterial membrane
vesicles are of scientific and practical importance. Questions concerned with which forces,
if any, play dominant roles in physical attachment or aggregation processes are of relevance
in understanding and possibly manipulating the initial attachment of bacteria to surfaces, with
applications in the food and health industries.

Van der Waals forces between surfaces have been studied, both experimentally and
theoretically, for nearly a century (see, e.g., [6]). In the last 25 years, measurements have
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been made of hard surfaces with well defined geometries [7]. Recently other geometries and
systems [8] were considered. There is a long history of theoretical studies of soft interfaces such
as polymer brushes [9–11]; more recently, experimental studies, e.g. [12–16] and references
therein, have been carried out. The purpose of this paper is to communicate the form of the Van
der Waals interaction between two soft surfaces or between a soft surface and a hard surface.

By a hard surface, we mean one that exhibits small fluctuations and an abrupt, effectively
discontinuous, change in number density on a length-scale small compared to the characteristic
length-scale of the measurements. By a soft surface, we mean one that exhibits a change in
number density from outside the system to inside it on length-scales large compared to those
characterizing the measurements. In the latter case, if thermal energies are sufficiently large that
the soft surface undergoes random fluctuations on timescales short compared to the movement
of the two systems, then the surface can be modelled as having translational invariance in
a plane parallel to the surface and a continuous change in mass density perpendicular to it.
In this note, we do not consider the roles of nanoscale length fluctuations, on the grounds
that, under our assumptions, they take place on a much faster timescale than the movements
of the macroscopic objects possessing the soft surfaces. The surface we have in mind is,
e.g., that of a heterogeneous polymer brush. The outer (bilayer) membrane of P. aeruginosa
PAO1, for example, possesses an outer layer of lipopolysaccharides (LPSs) characterized by
a hydrocarbon chain layer (∼2 nm thick), a KDO-core region (∼1–2 nm), and an O-side-
chain region possessing (charged or uncharged) sugar polymers which vary in length from
0 nm (O side-chain absent) to ∼40 nm [16–19]. Experiments on such systems have been
interpreted using DLVO or XDLVO theory [20–22], or the Alexander–de Gennes model [9–11]
of a polymer brush. We stress that our calculations are most likely to be relevant for length
scales intermediate between short-range (<1 nm) interactions and the mesoscale (>103 nm,
characteristic of, e.g., bacteria).

Systems with a soft interface frequently involve a relaxed polymer brush which can exhibit
a decrease in mass density from a value characteristic of the dense brush at the attachment
surface, to zero as the distance from the attachment surface increases (figure 1). The region of
decreasing density might be a substantial fraction of the brush thickness if the polymers exhibit
a wide range of lengths, as they appear to do in the case of, e.g., P. aeruginosa PAO1 [5]. Here
we calculate the form of the summed van der Waals interaction between (a) a hard surface and
a soft one and (b) two soft surfaces.

2. Theory. Van der Waals interactions involving polymer brushes

We assume that we can represent the two surfaces under consideration as parallel planes
separated by a distance D, and that the remainder of the objects occupy their respective half-
spaces (figure 1). We assume that the motions of the two mesoscopic objects are very much
slower than those of the polymer brush, so that the latter can be approximated by an average
number density that is independent of the position parallel to the surfaces. In our calculation
we use the classical approach (Hamaker summation method) [7, 23]. We assume additivity of
atomic-scale −C/r 6 interactions between infinitesimal volumes of space that are characterized
by the average number density ρ(�r) present in these volumes. For simplicity, we assume that
the interaction strength C is independent of the atomic moiety.

Consider two mesoscale objects, 1 and 2, and let the vectors �r1 and �r2 locate two
infinitesimal volumes, dv(�r1) and dv(�r2), on objects 1 and 2 respectively. Then, under our
assumptions, the van der Waals interaction between these two objects can be obtained by
integrating the −C/r 6 interaction between each pair of infinitesimal volumes that comprise
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Figure 1. Number-density distributions describing the time-averaged polymer distributions as a
function of position perpendicular to the two parallel surfaces. (A), (B) Soft surfaces with constant
slopes: two soft surfaces (A); one soft and one hard surface (B). (C), (D) Soft surfaces with varying
slopes: two soft surfaces (C); one soft and one hard surface (D).

the two objects:

U12 = −C
∫

1
dv (�r1)

∫
2

dv (�r2)
ρ1 (�r1) ρ2 (�r2)

|�r1 − �r2|6
. (1)

Here, C is the coefficient of the intermolecular pair potential, ρ1(�r1) and ρ2(�r2) are the number
densities of the two objects, and the integrations are over their volumes. The simplest case is the
interaction between two homogeneous semi-infinite objects of constant densities (figure 1(B)
with ξ = 0), oriented with their faces parallel. We define the two objects as uniformly filling
the two half-spaces −∞ < z � −D/2 (object 1) and D/2 � z < ∞ (object 2), with constant
number densities equal to ρ1 and ρ2 inside the objects and zero outside, and a single interaction
coefficient C . To calculate the interaction energy per area (A) between the two facing surfaces,
we use cylindrical polar coordinates (t, ϕ, z), so that equation (1) becomes

U(D)

A
= −

∫ 2π

0
dϕ

∫ ∞

0
tdt

∫ ∞

D/2
dz1

∫ −D/2

−∞
dz2

Cρ1ρ2s

[t2 + (z1 − z2)2]3
= − π

12

Cρ1ρ2

D2
= −AH

12π D2
,

(2)

where the Hamaker constant AH = π2Cρ1ρ2 has dimensions of energy (Joules) [24].
Equation (2) shows that the 1/r 6 atomic-scale interaction gives rise to a 1/D2 mesoscale
interaction. Hunter [25] and Tadmor [8] list various mesoscale van der Waals interactions
between objects of different shapes that possess hard surfaces. With hard surfaces, such
interactions are all power laws: U ∼ D−α , where D is some distance characterizing the
separation between the two objects. When the mass density goes smoothly to zero on a
sufficiently large scale, however, a different result is obtained.

Assume again that we have two homogeneous, solid objects, 1 and 2, of constant number
densities ρ1 and ρ2 filling the half space with −∞ < x, y < ∞. Attached to them are brushes
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Figure 2. Simulation of a model of a polymer brush formed by a monolayer of LPS molecules from
the outer layer of the outer membrane of a Gram-negative bacterium that illustrates the formation of
a density gradient at a soft interface. The hydrocarbon chain distribution has been omitted. Number-
density, �(z), as a function of distance z away from the hydrophobic core of the outer membrane.
Monovalent ions from NaCl are represented by a Debye screening length κ−1 = 0.3 nm−1. Solid
(dashed) lines and arrows are with (without) CaCl2. Arrows and thicker lines indicate the soft-
interface regions relevant to this paper. (A), (B) Uncharged O side-chains with hydrogen bonding
excluded (A) and included (B). (C), (D) Charged O side-chains with hydrogen bonding excluded
(C) and included (D).

possessing boundary layers of thicknesses ξ1 and ξ2. These boundary layers can be nanometers
in extent; in figure 2 we show the results of computer simulations of such brushes (below).
The edges of the brushes are separated by a distance D. The densities of the brushes decrease
linearly, from ρ1 or ρ2 at the surfaces of attachment to the homogeneous objects to zero at
the edges of the brushes; it is this kind of behaviour that characterizes what we refer to as
‘soft’. We begin by assuming that the dependence of number-density upon distance is linear
(figure 1).

The densities as functions of z are shown in figure 1(A), where we have arbitrarily chosen
ρ1 � ρ2 and ξ1 � ξ2. Assuming a single interaction coefficient C and performing the
integration of equation (1), we obtain the remarkably compact expression

U(ρ1, ρ2, ξ1, ξ2, D)

A
= −AH

12πξ1ξ2
�n

[
1 + ξ1ξ2

D(D + ξ1 + ξ2)

]
(3)

= AH

12πξ1ξ2
�n

[
1 − ξ1ξ2

(D + ξ1)(D + ξ2)

]
. (4)

Equations (3) and (4) constitute our main formal results for the summed van der Waals
interactions between soft planar interfaces. There are two interesting limits of equations (3)
and (4). The first is when the two objects are far apart compared to the brush thickness, so that
D � (ξ1 + ξ2). Then equations (3) and (4) become

U (ρ, ξ, D)

A
≈ −AH

12π D2

[
1 − (ξ1 + ξ2)

D

]
, (5)

which agrees with equation (2) when (ξ1 + ξ2)/D → 0, and identifies the first-order correction
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in the brush thickness. The second limit is when the two surfaces are very close together, so
that 1/D � (1/ξ1 + 1/ξ2); in this case, we obtain the interesting result that the interaction
diverges weakly like a logarithm:

U (ρ, ξ, D)

A
∼ −AH

12πξ1ξ2
�n

[
1

D(1/ξ1 + 1/ξ2)

]
. (6)

The case in which the left-hand object is hard (ξ1 → 0) and the right-hand one possesses a soft
surface (ξ2 > 0), as shown in figure 1(B), is easily treated and the result is

U (ρ1, ρ2, ξ, D)

A
= −AH

12π D(D + ξ2)
. (7)

This interaction diverges like 1/D as the two objects approach each other (D � ξ2). The case
of two hard surfaces (ξ2 → 0) again yields equation (2).

One can extend these results to flat surfaces of otherwise semi-infinite objects that are
coated with more complex soft layers than those described above. We assume that the mass
density along the z-axis, averaged over the xy-plane, can be described by piecewise linear
combinations of densities as shown in figures 1(C) and (D). A calculation similar to the previous
one shows that, for small values of D, the attractive interaction between two such complex soft
interfaces (figure 1(C)) diverges logarithmically as �n(1/D). If one surface is soft while the
other is hard (figure 1(D)), then the attractive interaction diverges like 1/D.

Finally, we present the results for the case in which the cross-section of the brush
follows a parabolic function. Scaling (e.g. [11]) and self-consistent field methods [26–30]
predict a parabolic number density dependence upon distance from the plane z, and computer
simulations [31, 32] gave the same results. Here we present the results for the van der
Waals interaction between two semi-infinite objects, as above, but now with parabolic polymer
brushes on their surfaces, and between two such objects, one with a hard surface and the
other possessing a parabolic polymer brush. The case of two polymer brushes is given in (8a)
and (8b), while the case of the single polymer brush and the hard surface is obtained by putting
ξ1 = 0.

ρ1 (z1) = ρ1 −∞ < z1 � −D/2 − ξ1

ρ1 (z1) = s1 (z1 + D/2) − K1 (z1 + D/2)2/2, −D/2 − ξ1 < z1 � −D/2

ρ1 (z1) = 0 −D/2 < z1 < ∞ (8a)

ρ2 (z2) = 0 −∞ < z2 < D/2

ρ2 (z2) = s2 (z2 − D/2) − K2 (z2 − D/2)2/2, D/2 � z2 < D/2 + ξ2

ρ2 (z2) = ρ2 D/2 + ξ2 � z2 < ∞. (8b)

As before, the edge of the left-hand brush is at z1 = −D/2, while that of the right-hand brush
is at z2 = D/2. The van der Waals interaction energy of two brushes is of the form

USS = U11 + U12 + U21 + U22 + UHS + UHH (9)

where the first four terms describe the interactions between the two brushes alone and the fifth
describes the two interactions between the brush on one and the bulk body of the other, while
the last describes the interaction between the two bulk objects with a hard surface (equation (2))
but separated by a distance D + ξ1 + ξ2. When D → ∞ for finite ξ1 and ξ2, then USS ∼ 1/D2.
When D � ξ1 and D � ξ2 as D → 0, we find that the only divergent term in USS comes from
that proportional to s1s2, USS ∼ −πCs1s2�n(1/D), as we found above for the case of a linear
dependence of the number-density upon z (equation (6)).
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The case of one brush interacting with a hard surface is obtained by setting ξ1 = 0, and the
calculation gives

UHS = −πCρ1

6

[
ρ2

2 (D + ξ2)
2

+ s2

(
− ξ2

2 (D + ξ2)
2

− 1

2 (D + ξ2)
+ 1

2D

)

− K2

2

(
− ξ 2

2

2 (D + ξ2)
2 − ξ2

(D + ξ2)
+ �n (D + ξ2) − �n (D)

)]
. (10)

When D → ∞ for finite ξ2, then UHS ∼ 1/D2. When D � ξ2 as D → 0, we find that the
only divergent terms in UHS are

UHS ∼ −πCρ1

12

[ s2

D
+ K2�n (D)

]
. (11)

The term in equation (11) that is proportional to K2 is not so much a repulsion as a reduction
of the term in equation (11) that is proportional to s2/D (the only term to appear in the linear-
slope model above), and reflects the decreasing slope of the brush number density. Note that,
because boundary conditions will differ, depending upon the system, we have not applied them
to relate s j , ξ j , K j and ρ j ( j = 1, 2).

It is clear that the change from a 1/D2 interaction, when the two surfaces are treated as
‘hard’, to a �n(1/D) interaction, when they are ‘soft’, is determined by whether the brush
density changes effectively discontinuously or whether it exhibits a finite slope at the edge of
the brush. In a real situation, there will be a competition between the various diverging terms
(e.g. those in equation (11)), and the dependence can be a combination of these terms—which
can change as the separation of the brushes changes.

These interactions, and those described elsewhere, can be combined with continuum
electrostatic interactions to give an appropriate DLVO theory of the surface. However, as has
been pointed out elsewhere, e.g. [20, 33], DLVO theory is not really suited to model such
polymeric surfaces on scales similar to, or less than, those of the brush. The reason is at least
twofold: (a) in replacing the end of the brush by a continuum of average thickness ξ , we
lose the possibility of including many-body effects of ions and polyions on brush structure,
and (b) if two brushes try to overlap, then they will repel each other, which can change their
thickness and density. If the brush thickness is not calculated self-consistently, then the brush
repulsion or attraction is accounted for only in an ad hoc way. Nonetheless, our finding that van
der Waals interactions between two soft surfaces, as modelled here, diverges only weakly as
�n(1/D) when they approach each other, serves to emphasize (a) the importance of considering
distance dependences other than 1/D2, and (b) the importance of other interactions, particularly
electrostatic interactions, in biological systems (e.g. [34]).

3. Computer simulation

Finally, we show that a minimal model of a charged or uncharged polymer brush at a bacterial
surface, under a range of different conditions, does exhibit a number-density distribution as a
function of distance from a membrane to which it is tethered, of the form that we have described
here. The intent of this calculation is to illustrate that such soft profiles arise in naturally
occurring systems. We have performed Monte Carlo computer simulations, e.g. [35], to
calculate the dependence of the number-density of a tethered semi-flexible polymer brush upon
the distance perpendicular to the plane of a membrane tethering surface. This model is intended
to represent the amphiphilic lipopolysaccharide (LPS) molecules in the outer layer of the outer
membrane of a Gram-negative bacterium at T = 300 K. In these molecules, hydrocarbon
chains are connected to a glucosamine segment which is connected to the KDO core. The
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form of the (charged) glucosamine–KDO-core segments of each LPS approximately represents
those of P. aeruginosa PAO1 [4]. The polysaccharides (the O side-chains) attached to the
other end of the KDO-core segment, and forming the polymer brush, can be uncharged (A-
band LPS) or charged (B-band LPS). A charged O side-chain is composed of repeat groups of
sugar trimers carrying charges (+,−,−). In the model, each sugar group is represented by a
sphere, and the spheres are connected by bonds [34]. Both hydrogen-bonding and electrostatic
interactions were included, but not van der Waals forces. The hydrocarbon chain region of an
LPS molecule was represented by a large sphere that served only to anchor the KDO-core–O-
side-chain segment of the molecule in the membrane plane. The aqueous medium, in which the
sugar groups were embedded, and containing monovalent ions, was represented by a linearized
Poisson–Boltzmann continuum, e.g. [7], with a Debye screening length κ−1. The outer layer
of the membrane was composed of 100 LPS molecules, and periodic boundary conditions
were used along the x- and y-axes, which define the membrane plane. LPS molecules could
oscillate perpendicular to the membrane plane (the z-axis) and the bond-stretching algorithm
was used [36]. We considered cases in which each O side-chain contained 15 sugar groups
(five trimers in the case of B-band LPS). Figure 2 shows the number-densities (number per 1 Å
thick slab, parallel to the membrane plane) of sugar groups, for both charged and uncharged
O side-chains, with hydrogen bonding included or ignored, in the presence or absence of CaCl2
with κ = 0.3 nm−1. Ca2+ and Cl− ions arising from CaCl2 are represented by charged spheres.

Figure 2(B) shows a collapse of the uncharged O side-chains brought about by the
attractive hydrogen bond interactions. This is seen to a lesser extent for charged O side-chains
in the presence of CaCl2 (figure 2(D)) which serves both to screen the electrostatic interactions
and provide dynamic calcium bridging between negative charges on the O side-chains, an effect
which dominates hydrogen bonding. The results show that, in all cases, the number-density, as
a function of distance away from the membrane surface, exhibits the type of behaviour that we
have considered here. The thickness of that section of the brush ranges from ∼15 to ∼100 Å,
almost the entire thickness of the brush.

We also estimated the characteristic time of fluctuations near the top of the brush.
Measurement times larger than this characteristic fluctuation time will average over the rapidly
varying motions of the monomers to give a smooth average density distribution as in figure 2.
Because the dynamics of monomer motion is dominated by thermal energies at the temperatures
(∼300 K) with which we are concerned, and because, in the Monte Carlo routine, we restricted
the range of movement per Monte Carlo step, 	r , to the range 0 � 	r �

√
3 × 10−1 nm, we

could plausibly associate a fixed elapsed time, 	t , with each Monte Carlo step. By performing
simulations on single free monomers and combining them with the Stokes–Einstein equation,
we estimated that 	t ≈ 3.76 × 10−12 s. Using this value, we then performed simulations
on the polymer brush and estimated the time for a sugar monomer, at a given position along
the O side-chain, to move an average distance equal to the approximate radius, ∼1.6 nm, of a
single LPS molecule projected onto the membrane plane. We estimated the average time for
sugar monomers to exhibit movement parallel to the membrane plane with 〈r 2

‖ 〉 = 2.56 nm2.
We found that, in the upper layers of the O side-chains, these average times ranged from ∼7.3
to ∼11.0×10−8 s in the absence of CaCl2, and from ∼3.4 to ∼6.3×10−8 s when it was present.
The slight difference is possibly due to the salt screening the Coulomb interaction. This number
of between 3 and 11 × 10−8 s gives an approximate time for small-scale fluctuations near the
top of the brush.

It should be noted that retardation effects change the form of the van der Waals interactions
in equation (1) from 1/r 6 to 1/r 7 for length-scales longer than about 5–10 nm [7]. Hence the
results presented here are for measurement times that are comparable to, or longer than, about
10−7 s, and for distances that are approximately 5–10 nm, or smaller.
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4. Conclusions

We reiterate that the length scale for which our calculation might be most relevant is
intermediate between that of short-range (<1 nm) interactions and the mesoscale (>103 nm)
that is characteristic of, e.g., bacteria. We remark that, although the thickness of a brush
might change as it approaches a hard surface or another brush, the average number density
distribution can nonetheless retain the general characteristics assumed here; this is supported
by scaling theory and by computer simulations. Most experimental data have been interpreted
in terms of an interaction assumed to vary like 1/D2 but we have shown this to be untrue
for the systems considered here. The observations made in this paper, that two soft surfaces
interact at short distances like �n(1/D), or that a soft surface interacts with an adjacent hard
surface like 1/D, should be taken into account in the analysis of experimental data. Finally, the
weak van der Waals interaction that arises in such systems points to the importance of longer
range Coulomb interactions in biological systems. Indeed, one might argue that the existence
of a brush decreases the importance of the van der Waals interaction relative to electrostatic
interactions, which favours some processes while inhibiting others.
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